STATE BOARD OF TECHNICAL EDUCATION, BIHAR

Scheme of Teaching and Examinations for V SEMESTER DIPLOMA IN ELECTRICAL ENGINEERING/ ELECTRICAL & ELECTRONICS ENGINEERING. (Effective from Session 2016-17 Batch)

THEORY

			TEACHING SCHEME	G EXAMINATION-SCHEME							
Sr. No.	SUBJECT	SUBJECT CODE	Periods per Week	Hours of Exam.	Teacher's Assessment (TA) Marks A	Class Test (CT) Marks B	End Semester Exam.(ESE) Marks C	Total Marks (A+B+C)	Pass Marks ESE	Pass Marks in the Subject	Credits
1.	Switchgear and Protection	1620501	04	03	10	20	70	100	28	40	04
2.	A.C. Machines	1620502	04	03	10	20	70	100	28	40	04
3.	Utilization of Electrical Energy	1620503	04	03	10	20	70	100	28	40	04
4.	Electric Traction-I	1620504	03	03	10	20	70	100	28	40	03
5	Industrial Automation	1620505	03	03	10	20	70	100	28	40	03
		Total	:- 18				350	500			

PRACTICAL

S				G EXAMINATION-SCHEME							
Sr. No.	SUBJECT	SUBJECT CODE		Hours of	Practica	al (ESE)	Total	Pass Marks	Credits		
INU.		CODE	Periods per Week	Exam.	Internal(A)	External(B)	Marks (A+B)	in the Subject			
6.	Switchgear and Protection Lab	1620506	02	03	15	35	50	20	01		
7.	A.C. Machines Lab	1620507	02	03	15	35	50	20	01		
8.	Electric Traction Lab-I	1620508	02	03	15	35	50	20	01		
9.	Industrial Automation Lab	1620509	02	03	15	35	50	20	01		
		Total :-	08				200				

TERM WORK

			TEACHING EXAMINATION SCHEME					
Sr. No.	SUBJECT	SUBJECT CODE	Periods per Week	Marks of Internal Examiner (X)	Marks of External Examiner (Y)	Total Marks (X+Y)	Pass Marks in the Subject	Credits
10.	Industrial Project & Entrepreneurship Development (TW)	1620510	04	07	18	25	10	01
11.	Professional Practices-V (TW)	1620511	03	07	18	25	10	01
	Total :- 07 50							
Tota	Total Periods per week Each of duration One Hour33Total Marks = 750							24

SWITCHGEAR & PROTECTION (ELECTRICAL ENGINEERING GROUP)

Subject Code	Theory No. of Periods Per Week				Credits		
1620501				Full Marks	:	100	04
1020501	L	Т	P/S	ESE	:	70	
	04	—	—	TA	:	10	
	—	—	—	СТ	:	20	

	Name of the Topic	Hours	Marks
Unit-01	Fundamental:		
	1.1 Necessity & functions of protective system.		
	1.2 Normal & abnormal conditions.	05	08
	1.3 Types of faults & their causes.	05	00
	1.4 Short circuit calculations (Symmetrical faults only)		
	1.5 Use of current limiting reactors & their arrangements.		
Unit-02	Circuit interrupting devices	12	14
	2.1 HRC fuses – construction, types, working, characteristics, selection		
	and applications		
	2.2 Isolators- vertical break, horizontal break & pentograph type		
	2.3 Arc formation process, methods of arc extinction, related terms.		
	2.4 Circuit breakers- Concept, Classification, Working principle,		
	Construction, Specification & Applications of		
	2.4.1 H.T – Bulk oil circuit breaker, Minimum oil circuit breakers		
	(M.O.C.B.), Sulpher Hexa Fluoride circuit breaker (SF6).		
	Vacuum circuit breaker.		
	2.4.2 L.T Air circuit breakers (ACB), miniature circuit breakers (MC		
	B), Moulded case circuit breakers (MCCB), Earth leakage		
	circuit breaker (E L C B or R L C B), Comparison of fuse &		
	MCCB		
	2.5 Selection of MCCB for motor.		
	2.6 Selection and rating of circuit breakers.		
Unit-3	Protective Relaying		
	3.1 Requirements- relay time, related terms.		
	3.2 Classification – Electromagnetic attraction, induction static , μP		
	based relays.		
	3.3 Protective transformers. (No numerical on above topic.)		
	3.4 Over current relay-Time current characteristics.	12	12
	3.5 Static over current relays	12	12
	$3.6 \mu\text{P}$ based over current relays.		
	3.7 Distance relaying- Principle, static, μP based		
	3.8 Directional relay.		
	3.9 Differential Relay. (Simple numerical on relay setting)		
Unit-4	Protection of Alternator		
	4.1 Abnormalities & Faults		
	4.2 Differential protection		
	4.3 Overcurrent , earth fault, interturn fault, negative phase sequence,	08	08
	over heating protection.		
	4.4 Reverse power protections.		
	(Simple numerical on differential protection)		

Unit-5	 Protection of Transformer 5.1 Abnormalities & faults. 5.2 Differential, over current, earth fault, interturn, restricted earth fault, over heating protection. 5.3 Buchholtz relay (Simple numerical on differential protection) 	08	08
Unit-6	Protection of Motor 6.1 Abnormalities & faults. 6.2 Short circuit protection, Overload protection, Single phase preventor	04	05
Unit-7	 Protection of Busbar & transmission line 7.1 Abnormalities & faults. 7.2 Bus bar protection. 7.3 Transmission line, over current, distance protection. Pilot wire protection 	06	08
Unit-8	Neutral Earthing 8.1 Introduction & importance. 8.2 Types of earthing 8.3 substation earthing	03	03
Unit-9	 Over voltage Protection 9.1 Causes of over voltages. 9.2 Lighting phenomena & over voltage due to lightning. 9.3 Protection of transmission line & substation from direct stroke. 9.4 Types of lightning arresters & surge absorbers & their Construction & principle of operation. 9.5 Protection against traveling waves. 9.6 Insulation co-ordination. 	06	04
	Total	64	70

Text /Reference Books:		
Titles of the Book	Name of Authors	Name of the Publisher
Switch gear & protection	S.Rao.	Khanna Publications, New
A text book on electrical power system	Soni,Gupta & Bhatnagar.	Dhnapat Rai & Sons, New
The art & science of protective relaying	Mason C.R.	
A text book of Electrical power	S.L.Uppal.	Khanna Publisher, Delhi.
Power System Protection & Switchgear	Badriram & Vishwakarma P.N.	TMH, New Delhi
Switchgear & Power system Protection	Ravindra P. Singh	PHI Publication
Handbook of Switchgears	BHEL	Tata McGraw Hill
Switchgear and Protection	Prabhat Kumar	Foundation Publishing

A. C. MACHINES (ELECTRICAL ENGINEERING GROUP)

Subject Code		Theory					Credits
1620502	No. of Periods Per Week			Full Marks	:	100	04
1020002	L	Т	P/S	ESE	:	70	
	04	_	_	ТА	:	10	1
	_	—	—	СТ	:	20	

	Nam	ne of the Topic	Hours	Marks
	Thre	e phase induction motor		
	1.1	Construction of three phase induction motor		
U	1.2	Production of rotating magnetic field	10	14
Unit-01	1.3	Principle of working/operation	13	14
	1.4	Concept of slip		
	1.5	Equation of rotor induced emf, current, frequency, reactance, and		
		impedance under steady and running condition		
	1.6	Torque equation of three phase induction motor		
	1.7	Starting and running torque of squirrel cage and slip ring		
		induction motor		
	1.8	Condition for maximum and starting torque		
	1.9	Torque slip characteristics of three phase induction motor		
	1.10	Effect of change in rotor circuit resistance on		
		torque-slip characteristics		
	1.11	Effect of change in supply voltage on torque-slip characteristics		
	1.12	measurement of slip by		
		a) Tachometer method		
		b) Comparing rotor frequency and stator frequency		
	1.13	Speed control of three phase induction motor by		
		a) Pole changing method		
		b) Frequency control method		
		c) By stator voltage control		
		d) Rotor resistance control	13	14
	1.14	Comparison between squirrel-cage and slip-ring induction motor.		
	1.15	Applications of three phase induction motor.		
	1.16	Power stages of three phase induction motor.		
	1.17	Double cage IM		
		a) Construction		
		b) Characteristic of outer, inner cage & combined characteristic		
		c) Industrial Applications (Numerical on all above)		
	1.18	I.M. as a generalized transformer		
	1.19	Vector diagram of IM		
	1.20	Equivalent circuit of 3-phase IM (No numerical)		
	1.21	Starting of 3-phase IM (No numerical)		
		a) Stator resistance starter	07	08
		b) Star-Delta starter		
		c) Auto transformer starter		
		d) Rotor resistance starter		

	Three Phase Alternator		
	2.1 Definition and construction of three phase Alternator		
	a) Armature		
	b) Rotor- smooth cylindrical & projecting type		
	2.2 Derivation of e.m.f. equation of Alternator which includes		
	a) Chording factor		
	b) Distribution factor		
	2.3 Factors affecting the terminal voltage of Alternator		
Unit-02	a) Armature resistive drop	12	14
	b) Leakage reactance drop		
	c) Armature reaction at various power factors &		
	concept of Synchronous impedance		
	2.4 Regulation of three phase Alternator by		
	a) Synchronous impedance method		
	b) mmf method		
	(Numerical on all		
	Synchronous Motor		
Unit-03	3.1 Principle of working/operation	12	13
0111-05	3.2 Synchronous Motor on load with constant excitation	12	15
	3.3 Effect of excitation at constant load		
	3.4 V curve & inverted V curve		
	3.5 Hunting & phase swinging		
	3.6 Applications		
	3.7 Starting of Synchronous Motor		
	3.8 Comparison between IM & Synchronous		
	Motor (Numerical on all above)		
	Single phase Motors		
	4.1 Types of Single phase IM4.2 Split phasing principle of starting		
	a) Resistance start induction run b) Capacitor start induction run		
Unit-04		07	07
01111-04	c) Capacitor start Capacitor run	07	07
	d) Double value Capacitor applications motor		
	4.3 Shaded pole IM		
	4.4 Applications		
	Tot	al 64	70
	10	ai 04	

	Text / Refer	ence Books:
Titles of the Book	Name of Authors	Name of the Publisher
Electrical Machines	S. K. Bhattacharya	TTTI, Chandigarh
Electrical Technology Vol. II	B. L. Theraja	S chand & Co.
Electrical engineering	C.L.Dawes	T. M. G. H.
Electrical Machinery	Dr.P.S. Bimbra	Khanna Publishers, New Delhi.
Electrical Machines	M.V.Deshpande	PHI Learning Pvt.Ltd, New Delhi.
Electrical Machines	D.P.Kothari, I.J.Nagrath	Tata McGraw Hill
A.C. Machines	Shalini Verma	Foundation Publishing

<u>UTILIZATION OF ELECTRICAL ENERGY</u> (ELECTRICAL ENGINEERING GROUP)

Subject Code		Theory					Credits
1620503	No.	of Periods Per V	Veek	Full Marks	:	100	04
1020305	L	Т	P/S	ESE	:	70	
	04		_	ТА	:	10	
	_		—	СТ	:	20	

	Name of the Topic	Hours	Marks
Unit-01	Illumination:		
	1.1 Definitions of Terms Used in Illumination:	14	14
	Light, Luminous Flux, Luminous Intensity, Lumen, Candle Power, Illumination,		
	Lux or Meter Candle, Mean Horizontal Candle Power (MHCP), Mean Spherical		
	Candle Power (MSCP), Mean Hemi-spherical Candle Power (MHSCP),		
	Reduction Factor, Lamp Efficiency, Specific Consumption, Glare, Space-Height		
	Ratio, Utilization Factor, Maintenance Factor, Depreciation Factor, Waste Light		
	Factor, Absorption Factor, Reflection Factor, Solid Angle.		
	1.2 Laws of Illumination:		
	- Law of Inverse Squares		
	- Lambert's Cosine Law. (No Numerical)		
	1.3 Sources of Light:		
	Construction, Working and Applications of Following Lamps:		
	- Incandescent Lamps.		
	- Halogen Lamps.		
	- Low Pressure Mercury Vapour Lamps (Fluorescent Tube).		
	- High Pressure Mercury Vapour Lamps.		
	- Sodium Vapour Lamps.		
	- Compact Fluorescent Lamps (C.F.L.)		
	- Metal Halide Lamps		
	 LED Lamps Neon Signs. 		
	1.4 – Basic Principles of Light Control.		
	1.5 – Types of Lighting Schemes.		
	Direct, Semi-direct, Semi-indirect, Indirect, General Lighting.		
	1.6 – Design of Lighting Scheme:		
	Objectives of Lighting Scheme. Factors to be considered While Designing the		
	Lighting Scheme. (Simple Numericals)		
	1.7 - Factory Lighting:		
	- General Requirements		
	- Types of Installations: General Lighting, Local Lighting, Emergency		
	Lighting.		
	1.8 - Lumen or Light Flux Method of Lighting		
	Calculations. (Simple Numericals)		
	1.9 - Flood Lighting		
	- Flood Lighting Purposes.		
	- Classification of Projectors.		
	- Location and Mounting of Projectors. (Simple Numericals)		

Unit-02	Electric Heating and Welding: Electric Heating:	16	10
	2.1.1– Advantages of Electric Heating.		
	2.1.2 – Modes of Transfer of Heat:		
	- Conduction, Convection and Radiation.		
	2.1.3 – Classification of Electric Heating Methods:		
	2.1.4 – Resistance Heating:(Construction & Operation)		
	- Direct Resistance Heating: Salt Bath Furnace.		
	- Indirect Resistance Heating: Resistance Ovens, Requirements		
	of Heating Element Material, Causes of Failure of Heating Elements,		
	Methods of Temperature Control.		
	- Applications of Resistance Heating.		
	2.1.5 – Arc Heating: (Construction & Operation)		
	- Direct Arc Furnace:		
	- Indirect Arc Furnace.		
	- Applications of Arc Heating.		
	2.1.6 –Induction Heating: (Construction & Operation)		
	- Core Type Induction Furnaces: Ajax Wyatt		
	Furnace.		
	- Coreless Induction Furnace.		
	- Applications of Induction Heating. (Simple Numericals on Melting		
	Furnaces)		
	2.1.7 – Dielectric Heating:		
	- Principle of Dielectric Heating.		
	 Advantages of Dielectric Heating 		
	- Limitations of Dielectric Heating.		10
	- Applications of Dielectric Heating. (Simple Numericals on Dielectric		
	Heating)		
	Electric Welding:		
	2.2.1– Methods of Electric Welding: Electric Arc Welding, Resistance		
	Welding.		
	2.2.2 – Resistance Welding:		
	- Principle of Resistance Welding.		
	 Advantages of Resistance Welding. 		
	- Types of Resistance Welding - (Only List)		
	2.2.3 – Spot Welding Machine.		
	2.2.4 – Electric Arc Welding:		
	- Formation and Characteristics of Electric Arc.		
	- Effect of Arc Length.		
	- Arc Blow.		
	2.2.5 – Polarity in DC Welding:		
	2.2.6 – Electrodes for Metal Arc Welding:		
	2.2.7 – V-I Characteristics of Arc Welding DC Machines.		
	2.2.8 – Arc Welding Machines:		
	- DC Welding Machines – MG Set, AC Rectified Welding Unit.		
	- AC Welding Machines – Welding Transformer.		
Unit-03	Elevators:		
	3.1 Types of electric elevators		
	3.2 Size and shape of elevator car		
	3.3 Speed of elevators		
	3.4 Location of elevator machine	08	08
	3.5 Types of elevator machines, elevator motors		
	3.6 Power transmission gears braking		
	3.7 Safety in elevators		
	3.8 Bombay lift act.		

Unit-04	Electric Drives:		
	4.1 – Introduction:	10	10
	- What is drive?	16	18
	- Drives – Mechanical Drive and Electric Drive.		
	4.2 – Advantages and Disadvantages of Electric Drive.		
	4.3 – Factors Governing Selection of Electric Motors.		
	4.4 - Nature of Electric Supply: 3 ϕ & 1 ϕ AC and DC.		
	4.5 - Type of Drive: Group Drive & Individual Drive.		
	4.6 - Nature of Load: Nature of the Mechanical Load, Matching of the Speed Torque		
	Characteristics of the Motor with that of the Load, and Starting Conditions of		
	the Load.		
	4.7 - Electrical Characteristics:		
	(Only DC Series, Three Phase and Single Phase Induction Motors are to be		
	dealt)		
	- Running Characteristics: Three Typical Speed Torque Characteristics – Inverse,		
	Constant Speed and Drooping.		
	- Starting Characteristics: Starting Torque only. (No Starters).		
	- Speed Control: Suitability to Economic and Efficient Speed Control		
	Methods (Above and Below Normal Speed).		
	- Braking Characteristics: Plugging, Rheostatic Braking and Regenerative		
	Braking, as Applied to DC Series and Three Phase Induction Motor.		
	4.8 - Mechanical Features:		
	- Type of Enclosure as per IS		
	- Type of Bearings		
	- Type of Transmission for Drive		
	- Noise Level.		
	4.9 - Size of Motor:		
	- Load Conditions – Continuous Loads, Short Time Loads, Intermittent Loads,		
	Continuous Operation with Short Time Loads and Continuous Operation with		
	Intermittent Loads.		
	- Duty Cycles.		
	- Standard Ratings for Motors as per ISS.		
	- Estimation of Rating of a Motor. (Simple Numericals on Estimating Size of		
	Continuously Rated Motor)		
	- Load Equalisation. (No Calculations)		
	4.10 - Cost:		
	- Capital Cost		
	- Running Cost (Losses, p.f., Maintenance).		
Unit-05	Economic Aspects of Utilising Electrical Energy:		
	6.1 – Economic Aspects of Utilising Electrical Energy.		
	6.2 – Costing of Electrical Energy: Fixed Charges, Semi Fixed Charges and Running		
	Charges.		
	6.3 – Formulation of Electrical Tariffs.	10	10
	6.4 - Various Types of Tariffs: Tariffs in force for Domestic, Commercial and	10	10
	Industrial Consumers.		
	6.5 – Power Factor Improvement: Causes of Low Power Factor, Disadvantages of		
	Low Power		
	Factor, Power Factor Improvement by using Static Capacitors, Location of		
	Capacitors for Power Factor Improvement, Most Economical Power Factor.		
	Automatic Power Factor Controller (Derivation and Simple Numerical)		
	6.6 – Energy Conservation: Importance and need of		
	Energy Conservation, Measures for Energy Conservation in (i) Electric Drives (ii) Electric Traction (iii) Electric Heating (iv) Refrigeration and		
	Air Conditioning (v) Illumination.		
	Total	64	70

Text / Reference Books:		
Fitles of the Book	Name of Authors	Name of the Publisher
Art & Science of Utilisation of Electrical Energy	H. Partab	Dhanpat Rai & Sons
Utilisation of Electric Power & Electric Traction.	J. B. Gupta	S. K. Kataria & Sons
Utilisation of Electric Power & Electric Traction.	G. C. Garg	Khanna Publishers
Electric Traction	J. Upadhyay S. N. Mahendra	Allied Publisher Ltd.
Fundamentals of Electrical Drives	G. K. Dubey	Narosa Publishing House.
Generation & utilization of Electrical Energy	S. Shivnagaraju, M. Balasubba Reddy, D. Srilatha	Pearson Publications
Utilization of Electrical Energy	E. Openshaw Taylor	Orient Longman Pvt. Ltd.
Utilization of Electrical Energy	Rajiv Ranjan	Foundation Publishing

ELECTRIC TRACTION-I (ELECTRICAL ENGINEERING GROUP)

Subject Code		Theory					Credits
1620504	No.	of Periods Per V	Veek	Full Marks	:	100	03
1020304	L	Т	P/S	ESE	:	70	
	03		—	ТА	:	10	
	—	—	—	СТ	:	20	

Chapter	Name of the Topic	Hours	Marks
Unit-01	Power Supply Arrangements:		
	1.1 – Introduction	12	18
	1.2 – High Voltage Supply.	12	10
	1.3 – Constituents of Supply		
	System. Substations.		
	Feeding Posts.		
	Feeding and Sectioning		
	Arrangements. Sectioning and		
	Paralleling Post.		
	Sub sectioning and Paralleling Post.		
	Sub sectioning		
	Post.		
	Elementary		
	Section.		
	Miscellaneous Equipments at Control Post or Switching		
	Stations.		
	1.4 – Major Equipments at		
	Substation. Transformer.		
	Circuit		
	Breaker.		
	Interrupter.		
	Protective System for AC Traction – Transformer Protection		
	and 25 KV Catenary Protection		
	1.5 – Location and Spacing of Substations.		

Unit-02	Overhead Equipments:		
	2.1 – Overhead Equipments (OHE).		
	2.2 – Principles of Design of		
	OHE: Composition of OHE.		
	Height of Contact Wire.		
	Contact Wire		
	Gradient.		
	Encumbrances.		
	Span Length.		
	2.3 – Automatic Weight Tension and Temp.		
	Compensation.		
	2.4 – Uninsulated Overlaps.		
	2.5 – Insulated Overlaps.		
	2.6 – Neutral	12	14
	Section. 2,7 –		
	Section Insulator.		
	2.8 – Isolator.		
	2.9 – Polygonal OHE:		
	Single Catenary Construction.		
	Compound Catenary		
	Construction.		
	Stitched Catenary		
	Construction. Modified Y		
	Compound Catenary.		
	2.10 – Effect of Speed on OHE.		
	2.11 – OHE Supporting Structure.		
	2.12 – Different types of signal boards of OHE.		
	2.13 – Maintenance of OHE:		
	- OHE Maintenance Schedule.		
	(No Derivation and No		
	Numerical)		
Unit-03	Current Collecting Equipments:		
	3.1 – Introduction.		
	3.2 – Systems of Supplying Power in Electric Traction: Third		
	Rail or Conductor Rail System.	08	14
	Overhead System.		
	3.3 – Current Collectors for Overhead System:		
	- Trolley Collector or Pole Collector, Bow Collector, Pentograph		
	Collector.		
	3.4 – Types of Pentographs: Diamond Pentograph and Faiveley Type.		
	3.5 – Construction of Faiveley Type Pantograph.		
	3.6 – Methods of Raising and Lowering of Pentograph.		
	3.7 – Maintenance of Pentograph.		

Unit-04	Signalling and Supervisory Control:		
	4.1 – Requirements of Signalling System		
	4.2 – Types of Signals.		
	4.3 – Colour Light Signals.		
	4.4 – Three and Four Aspects of Colour Light Signals.		
	4.5 – Track Circuits.		
	4.6 – DC Track Circuit.		
	4.7 – AC Track Circuit.		
	4.8 – Supervisory		
	Control:	00	14
	Introduction.	08	14
	Advantages of Remote Control.		
	Systems of Remote Control: DC versus Voice		
	Frequency (VF) Signalling. Remote Control System		
	Equipment and Network.		
	Mimic		
	Diagram.		
	Control Desk		
	for TPC.		
Unit-05	Train Lighting:		
	5.1 – Systems of Train Lighting.		
	5.2 – Special Requirements of Train Lighting.		
	5.3 – Method of obtaining Unidirectional Polarity.		
	5.4 – Method of obtaining Constant Output.		
	5.5 – Single Battery System.		
	5.6 – Double Battery Parallel Block System.		
	5.7 – Failure of Under frame Generating Equipments.	08	10
	5.8 – End on Generation.		
	5.9 – Railway Coach Air Conditioning:		
	- Requirements.		
	- Types of Installations.		
	- Air Conditioned Rolling Stock.		
	5.10 – Air Conditioning Equipments on Coaches.		

Text / Reference Books:		
Titles of the Book	Name of Authors	Name of the Publisher
Modern Electric Traction	H. Partab	Dhanpat Rai & Sons
Electric Traction	J. Upadhyay S. N. Mahendra	Allied Publishers Ltd.
Viddut Engine Parichay (In Hindi)	Om Prakash Kesari	S. P. Graphics, Nashik.
Electric Traction –Motive Power and Energy supply	Andreas Steimel	Oldenbourg-indstrieverlag
Electric Traction-I	Deepak Srivastava	Foundation Publishing

INDUSTRIAL AUTOMATION (ELECTRICAL ENGINEERING GROUP)

Subject Code 1620505		Theory					Credits
	No.	of Periods Per V	Week	Full Marks	:	100	03
	L	Т	P/S	ESE	:	70	
	03			ТА	:	10	
			_	СТ	:	20	

Chapter	Name of the Topic	Hours	Marks
Unit-1	Automation		
	1.1 Need of automation	02	
	1.2 Advantages of automation	02	
	1.3 Requirements of automation		
Unit-2	Control System		
	2.1 Concept of control system		
	2.2 Basic block diagram of control system		
	2.3 Transfer function		
	2.4 Block diegram reduction Techniques.	04	08
	2.5 Types of control system		
	2.6 Applications of control system		
Unit-3	Control System Components & Electrical Actuators	16	30
	3.1 I/P devices- switches-push buttons, foot switch, selector switch,		
	pilot switch, proximity Switch.		
	3.2 Sensors		
	3.3 Relays [Electro mechanical, reed]		
	3.4 Valves, pilot lamps, contactors		
	3.5 Potentio meteer- working uses as error detector		
	3.6 Servo motors - AC & DC working Principle.		
	3.7 Synchros- Transmitter & control transformer		
	3.8 Tacho generator- working Principle		
	3.9 Stepper motor (Permanent magnet & Variable reluctance)-		
	working Principle		
	3.10 Power & control circuits for different applications like hoist,		
	ganes, comeyer belt etc.		
Unit-4	Controllers & Control Actions	14	20
	4.1 Electric & Electronic Controllers & Lead log networks.		
	4.2 Digital controllers :- Brief overview of microprocessor & microcontroller		
	to be worked as controller		
	4.3 P, I P+I, P+D, P+I+D actions.		
	4.4 P+I+D action using hydraulic pneumatic & electronic controller		
	4.5 Tacho - generator	10	10
Unit-5	Programmable logic Controller	10	12
	5.1 Introduction		
	5.2 Advantages & disadvantages. 5.3 PLC vs PC		
	5.4 Block diegram of PLC		
		0.2	
Unit-6	Introduction to special control system 6.1 Distribution control system (DCS)- brief introduction to hardware &	02	
	Software used.		
	Total	48	70

Text / Reference Books:						
Titles of the Book	Name of Authors	Name of the Publisher				
Control System Engg.	Nagrath Gopal	Wiley Eastern				
Modern Control Engg.	Ogata	Prentice Hall				
Industrial Control Engg	Jacob	Prentice Hall				
Hydraulics & Pneumatics	Andrew Parr	Jaico Publication				
Programmable Logic Controller: Principle applications	Webb & Reis	Wiley Eastern				
Control of Electrical Machines	S.K. Bhattachrya Brijinder Singh	New Age International				
Industrial automation and process control	Jon stenerson	Prentice Hall				
Handbook of Industrial automation	Richad Shell	Taylor and Francis				
Industrial Automation	Balakrishnan	Foundation Publishing				

<u>SWITCHGEAR AND PROTECTION LAB</u> (ELECTRICAL ENGINEERING GROUP)

Subject Code		Practical					Credits	
1620506	No.	of Periods Per V	Veek	eek Full Marks :		50	01	
1020300	L	Т	P/S	ESE	:	50		
		—	02	Internal	:	15		
	—	—	—	External	:	35		

CONTENTS: PRACTICAL

Skills to be developed:

Intellectual Skills:

- 5. Identify different types of circuit breakers
- 6. Identify various faults on the system
- 7. Calculate the

fault levels Motor Skills:

- 1. Simulate circuit configuration to create various faults
- 2. Set the relays for various fault levels

List of Practical:

- 1) Identify the components of different types of circuit breakers with their specifications (through visits, video or model).
 - I) Low tension air circuit breaker.(including protective devices)
 - II) Minimum oil circuit breaker (MOCB)
 - III) Miniature circuit breaker (MCB)
 - IV) Moulded case circuit breaker (MCCB)
 - V) Earth Leakage circuit breaker (ELCB) or Residual leakage circuit breaker (RLCB)
 - VI) Sulpher Hexa fluoride circuit breaker (SF6)
 - VII) Vacuum circuit breaker.
- 2) Plot performance characteristics of over current relay.
- 3) Simulation of alternator protection.
- 4) Simulation of transformer protection.
- 5) Comparative study of specifications of earthing at different substations / different locations & new trends in earthing schemes (information search)
- 6) Comparative study of specification of lightning arresters of different manufacturers Through Brochures / Literature
- 7) For a given 3-ph induction motor with D.O.L. starter
 - a. Check the operation of over current relay for various loads.
 - b. Check the operation of single phasing preventer by creating single phasing fault.
 - c. Check the operation of D.O.L. starter under short circuit condition.

List of Laboratory Experiments :

1	To identify given 3-ph induction motor with D.O.L. starter
	a. Check the operation of over current relay for various loads.
	b. Check the operation of single phasing preventer by creating single phasing fault.
(Check the operation of D.O.L. starter under short circuit condition.
2	Plot performance characteristics of over current relay.
3	To perform an experiment on Simulation of
	A. Alternator protection.
	B. Transformer protection.
	Comparative study of specifications of earthing at different substations / different locations & new trends in earthing schemes (information search)
5	Comparative study of specification of lightning arresters of different manufacturers through Brochures / Literature
6	Explain the different types of circuit breakers with their specifications

A.C. MACHINES LAB (ELECTRICAL ENGINEERING GROUP)

Subject Code		Practical					Credits
1620507	No.	of Periods Per V	Week	Full Marks	:	50	01
1020307	L	Т	P/S	ESE	:	50	
	_	_	02	Internal	:	15	-
	_	—		External	:	35	1

CONTENTS: PRACTICAL

Intellectual Skills:	1.	Analytical
----------------------	----	------------

Analytical Skills
 Identification Skills

Motor Skills :

- Measuring Skills
- 2. Connecting instruments / machines

List of Practical's:

1) a) To measure the slip of 3-phase IM by

1.

- i) Tachometer
- ii) Comparing rotor & stator frequency
- iii) Stroboscopic method.

b) To reverse the direction of rotation of 3-phase IM.

- 2) To measure the performance of 3-phase IM by direct loading
- 3) To list different types of starters used for 3-phase IM .Identify & use the same to start & run 3-phase IM
- 4) Using an MG set (DC motor-Alternator) observe the effect of excitation & speed on induced e.m.f. & plot O.C.C. of the given alternator.
- 5) To find the percentage regulation of 3-phase alternator by synchronous impedance method at various power factors.
- 6) To find the percentage regulation of 3-phase alternator by direct loading method at various power factors.
- 7) To list & explain various starting methods of synchronous motor & applying one of them to start the synchronous motor. Plot V & inverted V curve of the same.
- 8) To list the various types of 1-phase IM, Collect the literature for them from Dealers / manufacturers of local places & compare on the following pts.

i) Method of starting ii) Cost iii) Performance iv) Starting torque etc. Prepare a report

List of l	Laboratory Experiments :
1	To measure the performance of 3-phase IM by direct loading
2	Using an MG set (DC motor-Alternator) observe the effect of excitation & speed on induced e.m.f. & plot O.C.C. of the given alternator.
3	To find the percentage regulation of 3-phase alternator by direct loading method at various power factors
4	To list the various types of 1-phase IM, Collect the literature for them from Dealers / manufacturers of local places & compare on the following pts. i) Method of starting ii) Cost iii) Performance iv) Starting torque etc. Prepare a report
5	To list & explain various starting methods of synchronous motor & applying one of them to start the synchronous motor. Plot V & inverted V curve of the same
6	To list different types of starters used for 3-phase IM .Identify & use the same to start & run 3-phase IM

ELECTRIC TRACTION LAB -I (ELECTRICAL ENGINEERING GROUP)

Subject Code		Practical					Credits
1620508	No.	of Periods Per V	Week	Full Marks	:	50	01
1020300	L	Т	P/S	ESE	:	50	
	_	—	02	Internal	:	15	
	—	—	—	External	:	35	

CONTENTS: PRACTICAL

List of 1	Experiments:-
1	Drawing Sheets:
	(i) Drawing on half Imperial sheet for Traction Substation Layout or Feeding Post.
	(ii) Drawing of half Imperial sheet for Pentagonal OHE Catenary, Different Catenary.
	according to speed limit, Cantilever assembly OHE Supporting structure,
	Pentograph, Cross section of Contact Wire.
	Note: Students should be able to identity, explain the functions of various
	components of substation and OHE.
	Visits:
	Visit to Traction Substation (for substation layout and OHE) or Railway
	Station (for signaling and train lighting) and writing a report.

INDUSTRIAL AUTOMATION LAB (ELECTRICAL ENGINEERING GROUP)

Subject Code		Practical					Credits
1620509	No. of Periods Per Week	Week	Full Marks	:	50	01	
1020309	L	Т	P/S	ESE	:	50	
		—	02	Internal	:	15	
	—	—		External	:	35	

CONTENTS: PRACTICAL

Intellectual Skills: a. Logical development b. Programming skills

Motor Skills : a. Interpretation skills b. Connecting properly

List of Practical's:

- 1) a) To plot the characteristics of potentiometer
 - b) Use of potentiometer as error detector

2) To plot V-I characteristics of DC & AC servomotors. compare them with DC & AC motor characteristics

3) a) To plot the characteristics of synchro transmitter

b) Use of synchro transmitter- control transformer pair as error detector.

4) Measure step angle for a stepper motor in forward & reverse direction.

5) Draw a power circuit & control circuit using control symbols for a 3-phase IM using DOL starter.

6) Observe various components /parts/symbols/connections of a PLC demonstration kit in your laboratory.

7) Draw a ladder logic diagram for two different examples.

8) By using above ladder logic diagram observe the status of I/Os using PLC.

9) Perform stepper motor/ temperature control using PLC.

10) Identify the parts of hydraulic/ pneumatic servomotor from cut-section/model.

B) Mini Project: (one in a group of eight students)

11) Collect the data of various PLC brands market & list.

12) Collect the data from internet about hardware & software of new control systems like SCADA, DCS.

13) Use the various control components in your laboratory to built a AC/DC position control system.

14) Built P, I, PI, PD & PID controller using op-amps & R-C circuits. Plot V-I characteristics

List of La	List of Laboratory Experiments :						
1	a) To plot the characteristics of potentiometer						
	b) Use of potentiometer as error detector						
2	To plot V-I characteristics of DC & AC servomotors. compare them with DC & AC motor						
	characteristics						
3	Observe various components /parts/symbols/connections of a PLC demonstration kit in your						
	laboratory.						
4	Collect the data from internet about hardware & software of new control systems like SCADA, DCS						
5	Make a study of DC/AC position control system using Various control components.						

INDUSTRIAL PROJECT AND ENTREPRENEURSHIP DEVELOPMENT-TW (ELECTRICAL ENGINEERING GROUP)

Subject Code		Term Work					Credits
1620510	No.	of Periods Per V	Week	Full Marks	:	25	01
1020310	L	Т	P/S	Internal	:	07	
		_	04	External	:	18	1

CONTENTS : TERM WORK

PART A) Industrial Project

Following activities related to project are required to be dealt with, during this semester

- 1. Form project batches & allot project guide to each batch. (Max. 4 students per batch)
- 2. Each project batch should select topic / problem / work by consulting the guide & / or industry. Topic/ Problem / work should be approved by Head of department.
- 3. Each project batch should prepare action plan of project activities & submit the same to respective guide.
- 4. At the end of semester, each project batch should submit the action plan and abstract of the project along with list of materials required if project involves fabrication or other facilities required in other kinds of project.
- 5. Action Plan should be part of the project report. Actual work of project should be done in sixth semester.

Group	Projects
01	 Design of Illumination Scheme (Up to 20 KW) for Hospital / Shopping Mall / Cinema Theatre / Commercial Complex / Educational Institute / Industrial Complex. Design of Rural Electrification Scheme for small Village, Colony. Case Studies Related to Industries – Operation / Maintenance / Repair and Fault Finding. (Refer Guideline Document). Energy Conservation and Audit. Substation Model (Scaled) Wind Turbine Model (Scaled)
02	 (b) White Further Model (Scaled) (1) Rewinding of Three Phase/Single Phase Induction Motor. (2) Rewinding of Single Phase Transformer. (3) Fabrication of Inverter up to 1000 VA. (4) Fabrication of Battery Charger. (5) Fabrication of Small Wind Energy System for Battery Charging. (6) Fabrication of Solar Panel System for Battery Charging. (7) Microprocessor/Micro controller Based Projects. (8) PC Based Projects. (9) Simulation Projects. Seminar on any relevant latest technical topic based on latest research, recent trends, new methods and developments in the field of Electrical Engineering / Power Electronics.
Develo Studen 1) 2) 3)	Entrepreneurship pment Objectives: ts will be able to Identify entrepreneurship opportunity. Acquire entrepreneurial values and attitude. Use the information to prepare project report for business venture. Develop awareness about enterprise management.

Chapter	Name of the Topic	Hours
Unit-01	 Entrepreneurship, Creativity & Opportunities Concept, Classification & Characteristics of Entrepreneur Creativity and Risk taking. Concept of Creativity & Qualities of Creative person. Concept of Creativity & Qualities of Creative person. Risk Situation, Types of risk & risk takers. Business Reforms. Process of Liberalization. Business Idea Methods and techniques to generate business idea. Transforming Ideas in to opportunities transformation involves Assessment of idea &Feasibility of opportunity SWOT Analysis 	03
Unit-02	Information And Support Systems 2.1) Information Needed and Their Sources: Information related to project, Information related to support system, Information related to procedures and formalities 2.2) Support Systems 1) Small Scale Business Planning, Requirements. 2) Govt. & Institutional Agencies, Formalities 3) Statutory Requirements and Agencies.	02
Unit-03	Market Assessment 3.1) Marketing -Concept and Importance 3.2) Market Identification, Survey Key components 3.3) Market Assessment Business Finance & Accounts Business Finance	02
Unit-04	 4.1) Cost of Project Sources of Finance Assessment of working capital Product costing Profitability Break Even Analysis Financial Ratios and Significance Business Account Accounting Principles, Methodology Book Keeping Financial Statements Concept of Audit 	03
Unit-05	Business Plan & Project Report 5.1) Business plan steps involved from concept to commissioning Activity Recourses, Time, Cost 5.2) Project Report 1) Meaning and Importance 2) Components of project report/profile (Give list) 5.3) Project Appraisal 1) Meaning and definition 2) Technical, Economic feasibility 3) Cost benefit Analysis	03

Unit-06	Enterprise Management And Modern Trends 6.1) Enterprise Management:	03
	 Essential roles of Entrepreneur in managing enterprise Product Cycle: Concept and importance Probable Causes Of Sickness Quality Assurance: Importance of Quality, Importance of testing E-Commerce: Concept and Process Global Entrepreneur Assess yourself-are you an entrepreneur? Proprese Project report and study its feasibility. 	
	Total	16

	Text /Reference Books:				
Titles of the Book	Name of Authors	Name of the Publisher			
Entrepreneurship Theory and Practice	J.S. Saini B.S.Rathore	Wheeler Publisher			
TTTI, Bhopal / Chandigadh					
Entrepreneurship Development	E. Gorden K.Natrajan	Himalaya Publishing.			
Entrepreneurship Development	Prepared by Colombo plan staff college for Technician Education.	Tata Mc Graw Hill Publishing co. ltd. New Delhi.			
A Manual on How to Prepare a Project Report	J.B.Patel D.G.Allampally				
A Manual on Business Opportunity Identification & Selection	J.B.Patel S.S.Modi	EDI STUDY MATERIAL Ahmadabad (Near Village Bhat , Via Ahmadabad Airport & Indira			
National Derectory of Entrepreneur Motivator & Resource Persons.	S.B.Sareen H. Anil Kumar	Bridge), P.O. Bhat 382428 , Gujrat,India P.H. (079) 3969163, 3969153 E-mail :			
New Initiatives in Entrepreneurship Education & Training	Gautam Jain Debmuni Gupta	ediindia@sancharnet.in/olpe@ediind ia.org Website : http://www.ediindia.org			
A Handbook of New Enterpreneurs	P.C.Jain				

2) Video Cassettes:

No	Subject	Source
1	Five success Stories of First Generation Entrepreneurs	EDI STUDY MATERIAL Ahmadabad (Near Village Bhat , Via Ahmadabad Airport
2	Assessing Entrepreneurial Competencies	& Indira Bridge), P.O. Bhat 382428 , Gujrat,India P.H. (079) 3969163, 3969153 E-mail :
3	Business Opportunity Selection and Guidance	<u>ediindia@sancharnet.in/olpe@ediindia.org</u> Website : http://www.ediindia.org
4	Planning for completion & Growth	
5	Problem solving-An Entrepreneur skill	

Glossary: Industrial Terms

Terms related to finance, materials, purchase, sales and taxes.

Components of Project Report:

- 1. Project Summary (One page summary of entire project)
- 2. Introduction (Promoters, Market Scope/ requirement)
- 3. Project Concept & Product (Details of product)
- 4. Promoters (Details of all Promoters- Qualifications, Experience, Financial strength)
- 5. Manufacturing Process & Technology
- 6. Plant & Machinery Required
- 7. Location & Infrastructure required
- 8. Manpower (Skilled, unskilled)
- 9. Raw materials, Consumables & Utilities
- 10. Working Capital Requirement (Assumptions, requirements)
- 11. Market (Survey, Demand & Supply)
- 12. Cost of Project, Source of Finance
- 13. Projected Profitability & Break Even Analysis
- 14. Conclusion.

PROFESSIONAL PRACTICES – V - TW (ELECTRICAL ENGINEERING GROUP)

	<u>(ELECIN</u>	ICAL LING	INCENIN	<u>J GRUUI /</u>			
Subject Code		Term Work					Credits
1620511	No.	No. of Periods Per Week		Full Marks	:	25	01
1020311	L	Т	P/S	Internal	:	07	
	—	—	03	External	:	18	

CONTENTS: TERM WORK

	Activity	Hours		
	Industrial Visits			
Unit-1	 Structured industrial visits be arranged and report of the same should be submitted by the individual student, to form a part of the term work. Following are the suggested type of Industries/ Fields - Visit to Electrical Machine Manufacturing Industry. Visit to a Foundry to see Furnaces and Ovens. Visit to L & T LT Switchgear Laboratory at Pune. Visit to Railway Station to study operation of Signaling system. Visit to Lacco shade or EMW at Nasik. Visit to Large Industry to study Protection Schemes. Any Industry having Automation for manufacturing Processes. 	16		
	The Guest Lecture/s from field/industry experts, professionals to be arrangedminimum 3 Lectures each of two hours from the following or alike topics. The briefreport to be submitted on the guest lecture by each student as a part of Term worka)Modern trends in A. C. Machines			
Unit-2	 b) Bio Medical Instruments: Working, Calibration etc c) Testing of Switchgears d) Computer aided drafting. e) Automotive wiring & lighting. f) Environmental pollution & control. g) Interview Techniques. h) Automobile pollution, norms of pollution control. 	10		
	Information Search (Student seminars based on information search & guest lecture			
Jnit-3	 topics.) a) Magnetic Levitation Systems b) Recent developments in use of Electrically operated vehicles for mass ransport c) Metro Railway in Kolkata and Delhi comparative study d) Electrically operated Motor Cars and Scooters/Motorbikes e) Alternative fuels & energy options. f) Any other topic 	06		
Jnit-4	Group Discussion : The students should discuss in group of six to eight students and write a brief report on the same as a part of term work. The topic of group discussions may be selected by the faculty members. Some of the suggested topics are - i) CNG versus LPG as a fuel. ii) Load shading and remedial measures. iii) Rain water harvesting. iv) Trends in energy conservation v) Disaster management. vi) Use of Plastic Carry Bags vii) Safety in day to day life. viii) Energy Saving in Institute. 	06		
Jnit-5	Seminar : Seminar topic should be related to the subjects of fifth semester / topics from information search & guest lectures. Each student shall submit a report of at least 10 pages and deliver a seminar (Presentation time – 10 minutes)	10		
	Total	48		